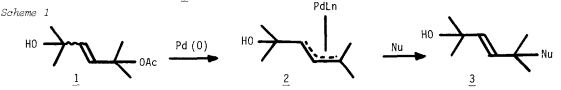
## REGIO-AND STEREOSELECTIVE PALLADIUM CATALYZED AMINATION OF ALLYLIC SUBSTRATES. SYNTHESIS OF E-4-AMINO-2-ALKEN-1-OL DERIVATIVES

J.P. Genêt<sup>\*</sup> and M. Balabane

Laboratoire de Chimie Organique de Synthèse, Université P. & M. Curie Equipe de Recherche associée au CNRS (N° 475). 75005. Paris, France

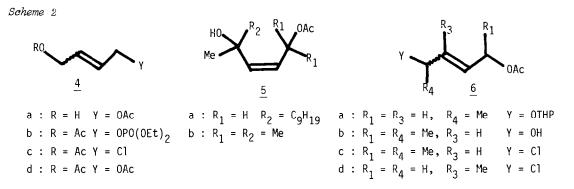
J.E. Bäckvall\* and J.E. Nyström


Department of Organic Chemistry, Royal Institute of Technology

S-10044 Stockholm, Sweden

Summary : Under mild conditions 4, 5 and 6 react with primary and secondary amines in the presence of palladium phosphine complexes as catalysts to give 4-amino-2-alken-1-ols with (E) stereochemistry.

The ability of palladium complexes to catalyze allylic exchange reactions by nucleophiles is an important synthetic methodology heavily documented<sup>1</sup>. In addition to carbon nucleophiles the heteronucleophiles and especially those with nitrogen have recently been studied. After the first catalyzed amination described by Atkins<sup>2</sup> and Takahashi<sup>3</sup>, these palladium reactions have proved efficient in syntheses of alkaloids<sup>4</sup>, aminosugars<sup>5</sup>, and azaspiranes<sup>6</sup>. These aminations are believed to proceed mainly via  $\pi$ -allyl palladium complexes<sup>7</sup>, and the regio-<sup>7</sup> and stereochemistry<sup>8</sup> of the nucleophilic attack by amine depends very much on the reaction conditions.

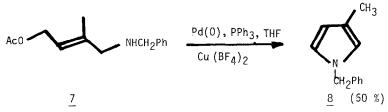

We have previously shown<sup>9</sup> that  $\pi$ -allyl complexes <u>2</u> generated *chemoselectively* from 1,4-hydroxyacetates <u>1</u> are useful in directing nucleophilic attack by stabilized carbanions. The new carbon-carbon bond was formed exclusively in the 4-position to the hydroxy group, resulting in the formation of compounds <u>3</u> (*Scheme 1*).



The same directing effect has been observed in the palladium (0)-catalyzed alkylation of 1-methoxy-4-acetoxy-2-cyclohexene<sup>10</sup>, 1-acetoxy-4-chloro-2-alkenes<sup>11</sup>, 1,2-epoxy-3-alkenes<sup>12</sup> and dicarboxylates of cyclopentene-1,4-diol<sup>13</sup>. A recent publication<sup>14</sup> also describes the activation of <u>Z</u>-4-acetoxybut-2-enyl dimethylphosphonate <u>4b</u> related to 4-hydroxybut-2-enyl acetate  $\underline{4a}^{9c}$  and 4-chlorobut-2-enyl acetate  $\underline{4c}^{11}$  (Scheme 2). In the latter publication the question was raised about the *unreactivity* of <u>4a</u> in palladium catalyzed aminations.

We now wish to report our initial observation<sup>15</sup> that <u>Z</u>-4-hydroxybut-2-enyl acetate <u>4a</u> and related 1,4-hydroxyacetates are highly reactive in palladium (0)-catalyzed aminations. We also report that palladium catalyzed amination of chloroacetates <u>6c</u> and <u>6d</u> occurs under mild conditions.



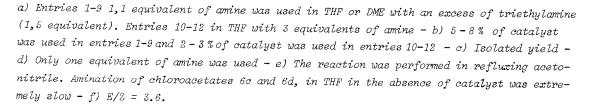



The palladium-catalyzed amination of substrates  $\underline{4}$ ,  $\underline{5}$  and  $\underline{6}$  works well with both primary and secondary amines (Table 1) and constitutes a general synthesis of 4-amino-2-alken-1-ol derivatives. It is interesting to note that primary amines only give rise to monoalkylated products (entries 4-6 and 9-10)<sup>16</sup>. The <u>E</u> and <u>Z</u> diacetate  $\underline{4d}$  also underwent a smooth amination reaction and more importantly, the use of one equivalent of Et<sub>2</sub>NH in the presence of Et<sub>3</sub>N results in amination of *only one* of the two allylic acetoxy groups (entry 2)<sup>17</sup>. The new carbon-nitrogen bond was regioselectively formed in the 4-position to the hydroxy or acetoxy group in all cases studied.

The stereochemistry of the 4-amino-2-alken-1-ols was established by  ${}^{1}$ H NMR spectroscopy at 200 or 250 MHz. In the cases of disubstituted double bonds the vicinal coupling constants of the olefinic protons J<sub>HH</sub> = 15 - 16 Hz are consistent only with <u>E</u> configuration of the double bond. In the case of the product obtained from <u>6d</u> (entry 12), mainly one geometrical isomer was observed, which was assigned as the E-isomer<sup>18</sup>.

Our studies establish the high reactivity of allylic substrates  $\underline{4}, \underline{5}$  and  $\underline{6}$  in palladium catalyzed amination. The reactions of these 1,4-hydroxyacetates and the related chloroacetates are highly regio-and stereoselective. The usefulness of the reactions studied is enhanced by the allylic hydroxy or acetoxy group in the products and by the readily available starting materials<sup>19</sup>. The products obtained have considerable synthetic utility for cyclization reactions<sup>20</sup> and for incorporating a second nucleophile in the allylic oxygen position<sup>11</sup>The cyclization of the aminoacetate  $\underline{7}$  to the pyrrole <u>8</u> demonstrates this point (Scheme 3).

Scheme 3




In conclusion, our approach to 4-amino-2-alken-1-ol derivatives appears quite efficient considering the generality and simplicity in synthesis of the starting materials<sup>19</sup>.

<u>Acknowledgements</u>. We thank the Centre National de la Recherche Scientifique (CNRS) and the Swedish Natural Science Research council for financial support.

| entry | substrate             | amine                                   | catalyst <sup>b</sup>                     | cond | itions<br>temp(°C) | products | yield <sup>C</sup><br>%    |
|-------|-----------------------|-----------------------------------------|-------------------------------------------|------|--------------------|----------|----------------------------|
| 1     | <u>4a</u> (Z)         | Et <sub>2</sub> NH                      | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 0,3  | 20                 | На       | NEt <sub>2</sub> 75        |
| 2     | <u>4d</u> (E) or (Z)  | $Et_2NH^d$                              | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 2    | 20                 | Ac0      | NEt <sub>2</sub> 70        |
| 3     | <u>4a</u> (E)         |                                         | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 1    | 20                 | HO       | N 65                       |
| 4     | <u>4a</u> (Z)         | PhCH <sub>2</sub> NH <sub>2</sub>       | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 2    | 20                 |          | NHCH <sub>2</sub> Ph<br>65 |
| 5     | <u>5a</u> (Z)         | PhCH <sub>2</sub> NH <sub>2</sub>       | Pd(DIPHOS) <sub>2</sub>                   | 1    | <sub>25</sub> C    |          | NHCH <sub>2</sub> Ph<br>74 |
| 6     | <u>5b</u> (Z)         | PhCH <sub>2</sub> NH <sub>2</sub>       | Pd(DIPHOS) <sub>2</sub>                   | 24   | 65                 |          | < <sup>76</sup><br>NHCH₂Ph |
| 7     | <u>6b</u> (Z)         | Et <sub>2</sub> NH                      | Pd(PPh3)4                                 | 4    | 60                 | но       | NEt <sub>2 68</sub>        |
| 8     | <u>6b</u> (Z)         | Me<br>PhCH <sub>2</sub> NH <sub>2</sub> | Pd(PPh <sub>3</sub> ) <sub>4</sub>        | 4    | 60                 | но       | NHCHMePh<br>45             |
| 9     | <u>6a</u> (Z)         | PhCH <sub>2</sub> NH <sub>2</sub>       | Pd(DIPHOS) <sub>2</sub>                   | 1    | 20                 | но       | NHCH2Ph<br>7521            |
| 10    | <u>6c</u> (E)         | PhCH <sub>2</sub> NH <sub>2</sub>       | Pd(acac) <sub>2</sub> + 4PPh <sub>3</sub> | 9    | 20                 | Aco      | NHCH <sub>2</sub> Ph<br>56 |
| 11    | <u>6c</u> (E)         | Me <sub>2</sub> NH                      | Pd(acac) <sub>2</sub> +4PPh <sub>3</sub>  | 3    | 20                 | Aco      | NMe <sub>2</sub><br>80     |
| 12    | <u>6d</u> (E/Z = 3.6) | Me <sub>2</sub> NH                      | Pd(acac) <sub>2</sub> +4PPh <sub>3</sub>  | 4    | 20                 | Aco      | NMe <sub>2</sub><br>71     |
| 13    | <u>6d</u> (E/Z = 3.6) | PhCH <sub>2</sub> NH <sub>2</sub>       | no catalyst                               | 1,5  | 80 <sup>e</sup>    | Aco      | NHCH2Ph<br>89 <sup>f</sup> |

Table 1 : Amination of allylic substrates 4, 5 and 6 with primary or secondary amines<sup>a</sup>



## References and notes

- a) B.M. Trost; Tetrahedron, 33, 2615 (1977) b) J. Tsuji; Organic Synthesis with Palladium Compounds, Springer Verlag (1980) c) J. Tsuji; Pure and Appl. Chem, 54, 197 (1982) d) B. Bosnich. L.B. Mackenzie; Pure and Appl. Chem. 54, 189 (1982) e) B. Akermark, J.E. Backvall, K. Zetterberg; Act. Chem. Scand. <u>B</u>, <u>36</u>, (9), 577, 1982, and for exhaustive citation see references (9b) and (9c).
- 2. K.E. Atkins, W.E. Walker and R.M. Manyik ; Tetrahedron Letters, 3821 (1970).
- 3. K. Takahashi, A.Miyaki and G. Hata ; Bull. Chem. Soc. Japan, 45, 230 (1972).
- 4. B.M. Trost and J.P. Genêt; J. Amer. Chem. Soc. <u>98</u>, 8516 (1976) B.M. Trost, S.A. Godleski and J.P. Genêt; J. Amer. Chem. Soc, <u>100</u>, <u>3930</u> (1978) - B.M. Trost, S.A. Godleski and J. Belletire; J. Org. Chem., <u>44</u>, 2052 (1979) - R.Z. Andriamialisoa, N. Langlois, Y. Langlois; Heterocycles <u>14</u>, 1457 (1980) - J.E. Bäckvall, R.E. Nordberg, J.E. Nyström, T. Högberg and B. Ulff; J. Org. Chem., <u>46</u>, 3479 (1981).
- H.H. Bear ans Z.S. Hanna ; Carbohydrate Research, <u>78</u> (C<sub>11</sub>-C<sub>14</sub>) (1980); Can. J. Chem. <u>59</u>, 889 (1981).
- 6. S.A. Godleski, J.D. Meinart and D.J. Miller; Tetrahedron Letters, 22, 2247 (1981).
- B. Åkermark, G. Åkermark, L.S. Hegedus and K. Zetterberg ; J. Amer. Chem. Soc., <u>103</u>, 3037 (1981).
- 8. a) B. Åkermark, J.E. Bäckvall, A. Löwenborg and K. Zetterberg ; J. Organometal. Chem., <u>166</u> c33 (1979).
  - b) J.E. Bäckvall, R.E. Nordberg, K. Zetterberg and B. Akermark; Submitted for publication.
  - c) B.M. Trost and E. Keinan ; J. Amer. Chem. Soc., <u>100</u>, 7779 (1978).
  - d) B.M. Trost and E. Keinan ; J. Org. Chem., 44, 3451 (1980).
- 9. a) J.P. Genêt, F. Piau, J. Ficini ; Tetrahedron Letters, 21, 3183 (1980).
  - b) J.P. Genêt, F. Piau ; J. Org. Chem. <u>46</u>, 2414 (1981).
  - c) J.P. Genêt, M. Balabane, Y. Legras ; Tetrahedron Letters, <u>23</u>, 331 (1981).
  - d) J.P. Genêt, M. Balabane, F. Charbonnier ; Tetrahedron Letters, 23, 5027 (1982).
- 10. J.E. Bäckvall and R.E. Nordberg ; J. Amer. Chem. Soc., 103, 4959 (1981).
- 11. J.E. Bäckvall, R.E. Nordberg and J.E. Nyström; Tetrahedron Letters, 23, 1617 (1982).
- B.M. Trost and G.A. Molander; J. Amer. Chem. Soc., <u>103</u>, 5969 (1981) J. Tsuji, H. Ueno, Y. Kobayashi and H. Okumoto; Tetrahedron Letters, 22, 2575 (1981).
- 13. R.S. Valpey, D.J. Miller, J.M. Ester and S.A. Godleski ; J. Org. Chem. 47, 4717 (1982).
- 14. Y. Tanigawa, K. Nishimura, A. Kawasaki, S.I. Murahashi; Tetrahedron Letters, 23, 5549 (1982).
- 15. M. Balabane; Thèse de 3ème cycle, june 23 (1982), Université Pierre & Marie Curie (Paris).
- 16. B.M. Trost ; Pure and Appl. Chem. 51, 794 (1979).
- A similar selectivity for monosubstitution was recently observed in the palladium-catalyzed alkylation of cyclopentene-1,4-diol dicarboxylates (réf 13).
- 18. The assignment is based on the fact that the product is identical to the major geometrical isomer obtained from classical nucleophilic substitution of the E/Z mixture (E/Z = 3.6). In the non-catalyzed nucleophilic substitution the olefin geometry should not be affected.
- 19. For the syntheses of hydroxyacetates <u>4a</u>, <u>5b</u>, <u>6a</u> and <u>6b</u> see references (9a-d). The chloroacetates <u>6c</u> and <u>6d</u> were prepared by palladium-catalyzed 1,<u>4</u>-acetoxychlorination of E,Z-2,4-hexadiene <u>and</u> isoprene respectively (11). Hydroxyacetate <u>5a</u> was prepared according to the following sequence :

$$H \rightarrow C \equiv C \rightarrow CH_2OH \xrightarrow{(i)} EtMgBr(2eq.)THF}_{(ii)} Me \xrightarrow{C}_{0} - CgH_{19} \longrightarrow Me \xrightarrow{CgH_{19}}_{OH} C = C \rightarrow CH_2OH \xrightarrow{(i)} H_2, Pd, Lindlar}_{OH} \xrightarrow{5a}_{(ii)} AC_2O, NEt_3, CH_2Cl_2 \xrightarrow{5a}_{(ii)}$$

- J.E. Bäckvall and J.E. Nyström ; J. Chem. Soc. Chem. Comm., 59 (1981) and references cited therein.
- 21. The aminoalcohol was obtained after hydrolysis (HCl, 2 N ; 1 hr, 25°C) of the corresponding tetrahydropyrannyl ether.

(Received in France 14 March 1983)